Transient cavities and the excess chemical potentials of hard-spheroid solutes in dipolar hard-sphere solvents
نویسندگان
چکیده
منابع مشابه
Transient cavities and the excess chemical potentials of hard-spheroid solutes in dipolar hard-sphere solvents.
Monte Carlo computer simulations are used to study transient cavities and the solvation of hard-spheroid solutes in dipolar hard-sphere solvents. The probability distribution of spheroidal cavities in the solvent is shown to be well described by a Gaussian function, and the variations of fit parameters with cavity elongation and solvent properties are analyzed. The excess chemical potentials of...
متن کاملThe Chiral Dipolar Hard Sphere Model
A simple molecular model of chiral molecules is presented in this paper : the chiral dipolar hard sphere model. The discriminatory interaction between enantiomers is represented by electrostatic (or magnetic) dipoles-dipoles interactions : short ranged steric repulsion are represented by hard sphere potential and, in each molecule, two point dipoles are located inside the sphere. The model is d...
متن کاملBranching points in the low-temperature dipolar hard sphere fluid.
In this contribution, we investigate the low-temperature, low-density behaviour of dipolar hard-sphere (DHS) particles, i.e., hard spheres with dipoles embedded in their centre. We aim at describing the DHS fluid in terms of a network of chains and rings (the fundamental clusters) held together by branching points (defects) of different nature. We first introduce a systematic way of classifying...
متن کاملDisorder and excess modes in hard-sphere colloidal systems
The anomalous thermodynamic properties of glasses remain incompletely understood, notably the anomalous peak in the heat capacity at low temperatures; it is believed to be due to an excess of low-frequency vibrational modes and a manifestation of the structural disorder in these systems. We study the thermodynamics and vibrational dynamics of colloidal glasses and (defected) crystals. The exper...
متن کاملHard-sphere-like dynamics in a non-hard-sphere liquid.
The collective dynamics of liquid gallium close to the melting point has been studied using inelastic x-ray scattering to probe length scales smaller than the size of the first coordination shell. Although the structural properties of this partially covalent liquid strongly deviate from a simple hard-sphere model, the dynamics, as reflected in the quasielastic scattering, are beautifully descri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 2005
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.2062027